백승렬 교수팀 'SDDGR' 연구…자율 주행·보안 시스템 혁신 기대
[울산=뉴시스]구미현 기자 = 울산과학기술원(UNIST)은 인공지능대학원 백승렬 교수팀이 AI가 기존 지식을 유지하면서도 새로운 정보를 학습할 수 있는 'SDDGR(Stability Diffusion-based Deep Generative Replay)' 기술을 개발했다고 20일 밝혔다.
'SDDGR' 기술은 스마트 가전 제품, 로봇 공학, 의료 분야 등 일상생활에 밀접한 영역에서 AI의 정확한 인식을 가능하게 한다. 특히 자율 주행 자동차가 도로 위의 다양한 물체를 인식하고 안전하게 운행하는 데 큰 도움이 된다. 보안 시스템에 적용하면 침입자를 정확하게 감지해 경고 알람을 즉각 보낼 수 있다.
기존에 개발된 '클래스 증분 학습(CIL)' 기술은 이미지 안의 여러 객체를 인식하고 분류하는 데 한계가 있었다. 이를 해결하기 위해 'SDDGR' 기술이 등장했다. 고품질 이미지를 만들어 이전에 배운 것들을 잘 기억하게 해준다. 반복적인 과정을 통해 이미지의 질을 더 높이며, 기존 지식을 효과적으로 유지할 수 있다. 새로운 데이터를 학습할 때도 성능을 높이는 방법을 사용해 더욱 정확하게 배우는 것이다.
경제적 효율성도 뛰어나다. 기존 데이터를 반복 사용하지 않아 광범위한 데이터를 저장하고 처리하는 비용을 절감할 수 있다. 기업들에게 큰 경제적 이익을 줄 것으로 기대된다.
백승렬 교수는 "SDDGR 모델이 다양한 산업 분야에서 지속적인 객체 탐지의 정확성을 높이는 데 큰 도움이 될 것"이라고 말했다.
제1저자 김준수 연구원은 "SDDGR 기술이 다양한 응용 분야에서 실질적인 효과가 있음을 보여줬다"며 "기업들이 더 적은 비용과 시간으로 더 나은 인공지능 모델을 개발하는 데 기여할 수 있을 것"이라고 언급했다.
이번 연구 결과는 세계적 컴퓨터 비전 학술대회인 CVPR 2024에서 오는 21일 발표될 예정이다. 이번 연구는 과학기술정보통신부(MSIT), 한국연구재단(NRF), 정보통신기획평가원(IITP), 해양수산과학기술진흥원(KIMST), LG전자, CJ AI센터의 지원을 받아 수행됐다.
◎공감언론 뉴시스 [email protected]